Logo

Topics in the Theory of Quadratic Residues

Small book cover: Topics in the Theory of Quadratic Residues

Topics in the Theory of Quadratic Residues
by

Publisher: arXiv
Number of pages: 160

Description:
Beginning with the fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques.

Home page url

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: Elliptic Curves over Function FieldsElliptic Curves over Function Fields
by - arXiv
The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.
(6881 views)
Book cover: Pluckings from the tree of Smarandache: Sequences and functionsPluckings from the tree of Smarandache: Sequences and functions
by - American Research Press
The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.
(12489 views)
Book cover: Collections of Problems on Smarandache NotionsCollections of Problems on Smarandache Notions
by - Erhus University Press
This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.
(12334 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(12087 views)