**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov

**Publisher**: arXiv 2014**Number of pages**: 66

**Description**:

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The second section of the paper introduces the theory and discusses some problems in that context.

Download or read it online for free here:

**Download link**

(760KB, PDF)

## Similar books

**Ends of Complexes**

by

**Bruce Hughes, Andrew Ranicki**-

**Cambridge University Press**

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.

(

**4681**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**5714**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**12459**views)

**A Geometric Approach to Differential Forms**

by

**David Bachman**-

**arXiv**

This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.

(

**9121**views)