Logo

Linear Partial Differential Equations and Fourier Theory

Large book cover: Linear Partial Differential Equations and Fourier Theory

Linear Partial Differential Equations and Fourier Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521136598
ISBN-13: 9780521136594
Number of pages: 619

Description:
This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.

Download or read it online for free here:
Download link
(13MB, PDF)

Similar books

Book cover: Chebyshev and Fourier Spectral MethodsChebyshev and Fourier Spectral Methods
by - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(13575 views)
Book cover: Lectures on Potential TheoryLectures on Potential Theory
by - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(4668 views)
Book cover: Harmonic AnalysisHarmonic Analysis
by - University of Kentucky
These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.
(5123 views)
Book cover: Harmonic Function TheoryHarmonic Function Theory
by - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(9286 views)