**Templates for the Solution of Linear Systems**

by Richard Barrett et al.

**Publisher**: Society for Industrial Mathematics 1987**ISBN/ASIN**: 0898713285**ISBN-13**: 9780898713282**Number of pages**: 117

**Description**:

In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire.

Download or read it online for free here:

**Download link**

(740 KB, PDF)

## Similar books

**An Introduction to Determinants**

by

**William Thomson**

Every important principle has been illustrated by copious examples, a considerable number of which have been fully worked out. As my main object has been to produce a textbook suitable for beginners, many important theorems have been omitted.

(

**1627**views)

**Notes on Numerical Linear Algebra**

by

**George Benthien**

Tutorial describing many of the standard numerical methods used in Linear Algebra. Topics include Gaussian Elimination, LU and QR Factorizations, The Singular Value Decomposition, Eigenvalues and Eigenvectors via the QR Method, etc.

(

**9052**views)

**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear equations, matrices and determinants. All examples are solved, and the solutions consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

(

**11747**views)

**Introduction to Linear Bialgebra**

by

**W.B.V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**arXiv**

This book introduced a new algebraic structure called linear bialgebra. We have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these structures.

(

**7387**views)