**A First Course in Complex Analysis**

by M. Beck, G. Marchesi, D. Pixton

**Publisher**: San Francisco State University 2012**Number of pages**: 215

**Description**:

These are the lecture notes of a one-semester undergraduate course which we taught at SUNY Binghamton. For many of our students, Complex Analysis is their first rigorous analysis (if not mathematics) class they take, and these notes reflect this very much. We tried to rely on as few concepts from real analysis as possible. In particular, series and sequences are treated 'from scratch'. This also has the (maybe disadvantageous) consequence that power series are introduced very late in the course.

Download or read it online for free here:

**Download link**

(multiple formats)

Download mirrors:**Mirror 1**

## Similar books

**On Riemann's Theory of Algebraic Functions and their Integrals**

by

**Felix Klein**-

**Macmillan and Bowes**

In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding.

(

**7190**views)

**Complex Variables: Second Edition**

by

**R. B. Ash, W. P. Novinger**-

**Dover Publications**

The text for advanced undergraduates and graduates, it offers a concise treatment, explanations, problems and solutions. Topics include elementary theory, general Cauchy theorem and applications, analytic functions, and prime number theorem.

(

**10635**views)

**Methods for Finding Zeros in Polynomials**

by

**Leif Mejlbro**-

**BookBoon**

Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.

(

**5185**views)

**Calculus of Residua: Complex Functions Theory a-2**

by

**Leif Mejlbro**-

**BookBoon**

This is the second part in the series of books on complex functions theory. From the table of contents: Introduction; Power Series; Harmonic Functions; Laurent Series and Residua; Applications of the Calculus of Residua; Index.

(

**6424**views)