Logo

Mixed Motives by Marc Levine

Large book cover: Mixed Motives

Mixed Motives
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821807854
ISBN-13: 9780821807859
Number of pages: 523

Description:
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Ample Subvarieties of Algebraic VarietiesAmple Subvarieties of Algebraic Varieties
by - Springer
These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.
(2411 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(7044 views)
Book cover: Analysis on Homogeneous SpacesAnalysis on Homogeneous Spaces
by - Royal Institute of Technology Stockholm
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.
(4637 views)
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
by
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(6067 views)