**Manifolds of Differentiable Mappings**

by Peter W. Michor

**Publisher**: Birkhauser 1980**ISBN/ASIN**: 0906812038**ISBN-13**: 9780906812037**Number of pages**: 165

**Description**:

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**8311**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**10303**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6164**views)

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**6819**views)