**Equivariant Stable Homotopy Theory**

by G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure

**Publisher**: Springer 1986**ISBN/ASIN**: 3540168206**ISBN-13**: 9783540168201**Number of pages**: 538

**Description**:

Our primary purpose in this volume is to establish the foundations of equivariant stable homotopy theory. To this end, we shall construct a stable homotopy category of G-spectra enjoying all of the good properties one might reasonably expect, where G is a compact Lie group. We shall use this category to study equivariant duality, equivariant transfer, the Burnside ring, and related topics in equivariant homology and cohomology theory.

Download or read it online for free here:

**Download link**

(30MB, PDF)

## Similar books

**Lecture Notes on Motivic Cohomology**

by

**Carlo Mazza, Vladimir Voevodsky, Charles Weibel**-

**AMS**

This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.

(

**5174**views)

**Manifold Theory**

by

**Peter Petersen**-

**UCLA**

These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.

(

**4931**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**7371**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**5304**views)