Logo

A Gentle Introduction to the Art of Mathematics

Large book cover: A Gentle Introduction to the Art of Mathematics

A Gentle Introduction to the Art of Mathematics
by

Publisher: Southern Connecticut State University
Number of pages: 428

Description:
The point of this book is to help you with the transition from doing math at an elementary level (which is concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements within those systems).

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(10618 views)
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
(16249 views)
Book cover: An Inquiry-Based Introduction to ProofsAn Inquiry-Based Introduction to Proofs
by - Saint Michael's College
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.
(5601 views)
Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
(4393 views)