**Nonlinear Functional Analysis**

by Gerald Teschl

**Publisher**: University of Vienna 2009**Number of pages**: 74

**Description**:

This manuscript provides a brief introduction to nonlinear functional analysis. We start out with calculus in Banach spaces, review differentiation and integration, derive the implicit function theorem and apply the result to prove existence and uniqueness of solutions for ordinary differential equations in Banach spaces. Next we introduce the mapping degree in both finite and infinite dimensional Banach spaces.

Download or read it online for free here:

**Download link**

(450KB, PDF)

## Similar books

**C*-algebras**

by

**John Erdos**-

**King's College, London**

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory ...

(

**5354**views)

**Notes on Operator Algebras**

by

**G. Jungman**-

**Los Alamos National Laboratory**

Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.

(

**6710**views)

**Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics**

by

**N.P. Landsman**-

**arXiv**

A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.

(

**7498**views)

**Hilbert Space Methods for Partial Differential Equations**

by

**R. E. Showalter**-

**Pitman**

Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.

(

**10714**views)