**Von Neumann Algebras**

by Vaughan F. R. Jones

**Publisher**: UC Berkeley Mathematics 2010**Number of pages**: 159

**Description**:

The purpose of these notes is to provide a rapid introduction to von Neumann algebras which gets to the examples and active topics with a minimum of technical baggage. The philosophy is to lavish attention on a few key results and examples, and we prefer to make simplifying assumptions rather than go for the most general case. Thus we do not hesitate to give several proofs of a single result, or repeat an argument with different hypotheses.

Download or read it online for free here:

**Download link**

(890KB, PDF)

## Similar books

**Functional Analysis with Applications**

by

**Palle Jorgensen, Feng Tian**-

**arXiv**

This book at the beginning graduate level will help students with primary interests elsewhere to acquire a facility with tools of a functional analytic flavor, say in harmonic analysis, numerical analysis, stochastic processes, or in physics.

(

**5661**views)

**Functors and Categories of Banach Spaces**

by

**Peter W. Michor**-

**Springer**

The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.

(

**5757**views)

**Operator Algebras and Quantum Statistical Mechanics**

by

**Ola Bratteli, Derek W. Robinson**-

**Springer**

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications.

(

**12891**views)

**Jordan Operator Algebras**

by

**Harald Hanche-Olsen, Erling StÃ¸rmer**-

**Pitman**

Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.

(

**8988**views)