Logo

Reversible Markov Chains and Random Walks on Graphs

Reversible Markov Chains and Random Walks on Graphs
by

Publisher: University of California, Berkeley
Number of pages: 516

Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Seeing Theory: A visual introduction to probability and statisticsSeeing Theory: A visual introduction to probability and statistics
by - Brown University
The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher ...
(992 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(10054 views)
Book cover: Introduction Probaility and StatisticsIntroduction Probaility and Statistics
by - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(21316 views)
Book cover: Bayesian Field TheoryBayesian Field Theory
by - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(984 views)