**Reversible Markov Chains and Random Walks on Graphs**

by David Aldous, James Allen Fill

**Publisher**: University of California, Berkeley 2014**Number of pages**: 516

**Description**:

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Seeing Theory: A visual introduction to probability and statistics**

by

**T. Devlin, J. Guo, D. Kunin, D. Xiang**-

**Brown University**

The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher ...

(

**992**views)

**Convergence of Stochastic Processes**

by

**D. Pollard**-

**Springer**

Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.

(

**10054**views)

**Introduction Probaility and Statistics**

by

**Muhammad El-Taha**-

**University of Southern Maine**

Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.

(

**21316**views)

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**984**views)