**Differential Geometry**

by Balazs Csikos

**Publisher**: Eötvös Loránd University 2010**Number of pages**: 123

**Description**:

Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in the 3-dimensional space; The fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; The Tangent Bundle; The Lie Algebra of Vector Fields; Differentiation of Vector Fields; Curvature; Geodesics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Notes on Differential Geometry**

by

**Matt Visser**-

**Victoria University of Wellington**

In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.

(

**5898**views)

**Tensor Analysis**

by

**Edward Nelson**-

**Princeton Univ Pr**

The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

(

**13025**views)

**Course of Differential Geometry**

by

**Ruslan Sharipov**-

**Samizdat Press**

Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.

(

**10899**views)

**Topics in Differential Geometry**

by

**Peter W. Michor**-

**American Mathematical Society**

Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.

(

**7041**views)