**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by Dominic Joyce

**Publisher**: arXiv 2002**Number of pages**: 58

**Description**:

This paper gives a leisurely introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by a survey of recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

Download or read it online for free here:

**Download link**

(570KB, PDF)

## Similar books

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**11606**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**5011**views)

**Combinatorial Geometry with Application to Field Theory**

by

**Linfan Mao**-

**InfoQuest**

Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.

(

**9590**views)

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**6325**views)