**C*-algebras**

by John Erdos

**Publisher**: King's College, London 2003**Number of pages**: 51

**Description**:

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

*This document is no more available for free.*

## Similar books

**Functional Analysis**

by

**Alexander C. R. Belton**-

**Lancaster University**

These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.

(

**7128**views)

**Linear Functional Analysis**

by

**W W L Chen**-

**Macquarie University**

An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.

(

**10574**views)

**An Introduction to Hilbert Module Approach to Multivariable Operator Theory**

by

**Jaydeb Sarkar**-

**arXiv**

An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.

(

**3025**views)

**Hilbert Spaces and Operators on Hilbert Spaces**

by

**Leif Mejlbro**-

**BookBoon**

Functional analysis examples. From the table of contents: Hilbert spaces; Fourier series; Construction of Hilbert spaces; Orthogonal projections and complements; Weak convergence; Operators on Hilbert spaces, general; Closed operations.

(

**7897**views)