Logo

Lecture Notes on Embedded Contact Homology

Small book cover: Lecture Notes on Embedded Contact Homology

Lecture Notes on Embedded Contact Homology
by

Publisher: arXiv
Number of pages: 88

Description:
These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering together many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples which have not been previously published. Finally, we review the recent application to four-dimensional symplectic embedding problems.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: First Steps Towards a Symplectic DynamicsFirst Steps Towards a Symplectic Dynamics
by - arXiv
Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.
(6431 views)
Book cover: Lectures on Holomorphic Curves in Symplectic and Contact GeometryLectures on Holomorphic Curves in Symplectic and Contact Geometry
by - arXiv
This is a set of expository lecture notes created originally for a graduate course on holomorphic curves. From the table of contents: Introduction; Local properties; Fredholm theory; Moduli spaces; Bubbling and nonsqueezing.
(7256 views)
Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(8311 views)
Book cover: Contact GeometryContact Geometry
by - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(6765 views)