Lecture Notes on Free Probability

Small book cover: Lecture Notes on Free Probability

Lecture Notes on Free Probability

Publisher: arXiv
Number of pages: 100

Contents: Non-commutative Probability Spaces; Distributions; Freeness; Asymptotic Freeness of Random Matrices; Asymptotic Freeness of Haar Unitary Matrices; Free Products of Probability Spaces; Law of Addition; Limit Theorems; Multivariate CLT; Infinitely-Divisible Distributions; Multiplication and S-transform; Products of free random variables; Free Cumulants; Non-crossing partitions and group of permutations; Fundamental Properties of Free Cumulants; Free Cumulants; R-diagonal variables; Brown measure of R-diagonal variables.

Home page url

Download or read it online for free here:
Download link
(650KB, PDF)

Similar books

Book cover: A History Of The Mathematical Theory Of ProbabilityA History Of The Mathematical Theory Of Probability
by - Kessinger Publishing, LLC
History of the probability theory from the time of Pascal to that of Laplace (1865). Todhunter gave a close account of the difficulties involved and the solutions offered by each investigator. His studies were thorough and fully documented.
Book cover: An Introduction to Probability and Random ProcessesAn Introduction to Probability and Random Processes
The purpose of the text is to learn to think probabilistically. The book starts by giving a bird's-eye view of probability, it first examines a number of the great unsolved problems of probability theory to get a feeling for the field.
Book cover: Probability, Geometry and Integrable SystemsProbability, Geometry and Integrable Systems
by - Cambridge University Press
The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.
Book cover: Probability on Trees and NetworksProbability on Trees and Networks
by - Cambridge University Press
This book is concerned with certain aspects of discrete probability on infinite graphs that are currently in vigorous development. Of course, finite graphs are analyzed as well, but usually with the aim of understanding infinite graphs and networks.